Virtual Memory to Support Unified Address Space

Why support a unified address space?
- Significantly improves applicability of NMAs
 - Allows NMAs to operate within the same process as CPU
- Enables “pointer-is-a-pointer” semantics
 - Any pointer can be dereferenced on CPU or NMAs
 - Each element has a single name in the address space
 - No explicit copies between CPU and NMAs are required

Virtual Memory’s Associativity

- Virtual memory is essentially fully associative:
 - “Any virtual page can be mapped to any physical frame”
- Any mapping is possible → Cannot access memory before translating

DIPTA: Distributed Inverted Page Table

- Each page can be placed at a single or few possible locations (set associative)
 - The set is statically determined by the virtual address
 - Location is known without translation (still need to check the page table)
 - Breaks “translate-then-fetch” dependency

Observation-I: To fully eliminate translation overhead, translation should finish before data fetch
Observation-II: Data and translation always needed together

- Co-locate page tables with data:
 - Fetch, move (and cache) together!

Results: Up to 4.9x performance improvement over TLB-based translation