Undetectable PMU Timing-Attack on Linear State-Estimation by Using Rank-1 Approximation

Context

- Synchrophasor measurements are vulnerable to timing attacks:
 - GPS → Spoofing a GPS signal
 - PTP/White Rabbit → Inserting an asymmetric delay unknown to the protocol.
- Can we change the state of the network by just attacking the reference time of a subset of PMUs, undetectable by residual analysis?

System Model

- 1-ph direct-sequence model of a transmission network with \(N \) buses.
- Only PMU measurements (voltage or current).
- \(M \) measurements, measurement vector \(z \) in \(\mathbb{C}^N \).

Attack Model

- Attacker knows \(Y \) and \(H \) matrices.
- He manipulates \(p \) different time references with \(\alpha \), different attack-angles (\(i=1:p \)).
- The attacker applies each \(\alpha \) attack-angle to a subset of PMUs \((A_i) \).

Results

We applied IoS equation to all possible combination of attack locations to discover undetectable spots

Undetectability

- We use state-of-the-art bad-data detection mechanisms (i.e., \(\chi^2 \) test, Largest Normalized Residual Test) to prove undetectability.
- The residuals are statistically the same before and after the attack.

Impact

- We deceive the network operator into believing that power flows have under- or overutilization.
- Up to 500% error in power-flow estimation

Comparison of the true apparent power flow in two lines and the estimated apparent power flow for the no-attack and attack scenarios

Comparison of \(p \)-values and CDFs of\(\chi^2 \)-values for the\(\chi^2 \) test applied to two attack locations: ideal location (in red), and lowest IoS performer location (in blue). New attack case is illustrated in gray.

References