A coauthority is made up of servers that dynamically form a tree. This makes everything scalable.

The DeDiS team is working on a number of projects related to coauthorities, or large-scale collective authorities, that distribute trust among a number of independent parties.

By decentralising trust, we go from weakest-link to strongest-link security.

With no single trusted party, coauthorities can:

- enable software developers to collectively sign updates
- provide public randomness
- enable privacy-conscious medical-data sharing
- prove that a document existed at a given time

Many other protocols can be based on coauthorities, e.g.:

CoSi

Enabling a large number of witnesses to sign off a given message or to reject it. This is done using the Collective Signing (CoSi) protocol. It is much faster than other protocols (JVSS and naive) for large numbers of signers.

PriFi

Privacy-Preserving Wi-Fi (PriFi) enables anonymous communication with strong guarantees of anonymity:
- is built upon communication trees provided by CoSi
- uses decentralized authorities
- relies on Chaum’s well-known Dining Cryptographers
- provides theoretically-strong anonymity

The main challenges are scalability and efficiency, both partly solved by tailoring the system for wireless networks.

ByzCoin

A novel consensus algorithm for Bitcoin, which can be deployed to any blockchain-based system:
- increases Bitcoin’s core security guarantees
- is based on PBFT, but preserves decentralization
- uses tree-based communication and collective signing to enable high scalability with low latency of transactions
- achieves throughput comparable to VISA’s average throughput (2000 tps)

Our Secure Distributed API (SDA) enables different protocols to live in a coauthority structure. Nodes work together as needed, then dissolve again. Easy-to-use structures for testing and simulating new protocols, ranging from single-node testing to simulating 32,000 nodes.

https://github.com/dedis/coauthority