OLTP On A Server-grade ARM

Utku Sirin, Raja Appuswamy, and Anastasia Ailamaki

Transaction processing

- TPC-C on a modern server:
 - Busy
 - Stalled

![Throughput vs. Power](image)

Stalls → wasted power

Xeon vs. Server-grade ARM

<table>
<thead>
<tr>
<th></th>
<th>Intel Ivy Bridge</th>
<th>ARM Cortex-A57</th>
</tr>
</thead>
<tbody>
<tr>
<td># Sockets</td>
<td>2 (one is active)</td>
<td>1</td>
</tr>
<tr>
<td># Cores/socket</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Issue width</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Clock speed</td>
<td>2.00GHz</td>
<td>2.00GHz</td>
</tr>
<tr>
<td>L1I / L1D</td>
<td>32KB / 32 KB</td>
<td>32KB / 32 KB</td>
</tr>
<tr>
<td>L2</td>
<td>256KB</td>
<td>256KB</td>
</tr>
<tr>
<td>L3</td>
<td>20 MB</td>
<td>8 MB</td>
</tr>
</tbody>
</table>

Similar micro-architectures

Energy proportionality

- In-memory Silo, TPC-C, 5GB

![Energy efficiency](image)

ARM achieves energy proportionality
- Large power-saving at low utilization

Server-grade ARM

- Fat
 - High performance
 - High power consumption

- Lean
 - Low performance
 - Low power consumption

Power vs. Throughput

- In-memory Silo, TPC-C, 5GB

![Normalized throughput efficiency](image)

ARM is a promising alternative
- High performance & low power

Tail latency

- In-memory Silo, TPC-C, 5GB

![Normalized latency](image)

Xeon is more suitable for low latency
- Renders Xeon the only alternative