Finding the dictionary $A_{m \times n}$ such that $y_j = Ax_j$, from a set of K observations $y_1, \ldots, y_K \in \mathbb{R}^m$ is called dictionary learning.

Applications:

- Inpainting image (removing the text from the image). Taken from [2]
- Visualizing voting pattern in Switzerland. Taken from [1]

The problem is only solvable with additional assumptions.

Sparse component analysis (SCA):

- x_1 is sparse.
- Recover A using a cost function that promotes the sparsity. For example:

$$\hat{A}_{y_i} = \arg\min_B \frac{1}{2K} \sum_{j=1}^{K} \|y_j - Bx_j\|_2^2$$

subject to $\|x_j\|_1 \leq \lambda$.

Independent component analysis (ICA):

- The entries of x_1 are independent.
- The dictionary A is found by using a cost function that measures independence of entries of x.

Our assumption:

x_1 follow a symmetric α stable distribution (S\alpha S).

Why model the sparse signal as an S\alpha S signal?

- They model a large class of sparse signals.

Sparse representation for color image restoration:

No need to recover x_1, \ldots, x_K.

Hyper-parameter free.

x_1 does need to be exactly 0, so more robust to noise.

Results:

Preliminary results from the experiments on synthetic data:

$\hat{x}_1, \hat{x}_2 \sim S\alpha S, A \sim N(0, I_{m \times m})$.

Benchmarks:

- ℓ_1/ℓ_2: Minimizing $\sum_{i=1}^{K} \|x_i\|_1$ conditioned on $\|y_1 - \hat{A}x_1\|_2 \leq \lambda$.
- $\ell_1 + \ell_2$: Minimizing $\frac{1}{2} \sum_{i=1}^{K} \|x_i - Bx_i\|_2^2 + \lambda_1 \|x_1\|_1 + \lambda_2 \|x_1\|_2^2$.

λ controls the sparsity.

![Image](image.png)

Figure 6: Impact of α on the success rate of the algorithms. The interesting range for many applications including image processing is roughly $\alpha \in [1, 1.5]$.

Filling missing pixels:

![Image](image.png)

Figure 7: Filling missing pixels with a dictionary trained over face dataset.

References:

Mining democracy.

Online learning for matrix factorization and sparse coding.

Sparse representation for color image restoration.